Schema
Pydantic allows auto creation of JSON Schemas from models:
from enum import Enum from pydantic import BaseModel, Field class FooBar(BaseModel): count: int size: float = None class Gender(str, Enum): male = 'male' female = 'female' other = 'other' not_given = 'not_given' class MainModel(BaseModel): """ This is the description of the main model """ foo_bar: FooBar = Field(...) gender: Gender = Field(None, alias='Gender') snap: int = Field( 42, title='The Snap', description='this is the value of snap', gt=30, lt=50, ) class Config: title = 'Main' # this is equivalent to json.dumps(MainModel.schema(), indent=2): print(MainModel.schema_json(indent=2))
(This script is complete, it should run "as is")
Outputs:
{ "title": "Main", "description": "This is the description of the main model", "type": "object", "properties": { "foo_bar": { "$ref": "#/definitions/FooBar" }, "Gender": { "title": "Gender", "enum": [ "male", "female", "other", "not_given" ], "type": "string" }, "snap": { "title": "The Snap", "description": "this is the value of snap", "default": 42, "exclusiveMinimum": 30, "exclusiveMaximum": 50, "type": "integer" } }, "required": [ "foo_bar" ], "definitions": { "FooBar": { "title": "FooBar", "type": "object", "properties": { "count": { "title": "Count", "type": "integer" }, "size": { "title": "Size", "type": "number" } }, "required": [ "count" ] } } }
The generated schemas are compliant with the specifications: JSON Schema Core, JSON Schema Validation and OpenAPI.
BaseModel.schema
will return a dict of the schema, while BaseModel.schema_json
will return a JSON string
representation of that dict.
Sub-models used are added to the definitions
JSON attribute and referenced, as per the spec.
All sub-models' (and their sub-models') schemas are put directly in a top-level definitions
JSON key for easy re-use
and reference.
"Sub-models" with modifications (via the Field
class) like a custom title, description or default value,
are recursively included instead of referenced.
The description
for models is taken from either the docstring of the class or the argument description
to
the Field
class.
The schema is generated by default using aliases as keys, but it can be generated using model
property names instead by calling MainModel.schema/schema_json(by_alias=False)
.
Field customisation🔗
Optionally, the Field
function can be used to provide extra information about the field and validations.
It has the following arguments:
default
: (a positional argument) the default value of the field. Since theField
replaces the field's default, this first argument can be used to set the default. Use ellipsis (...
) to indicate the field is required.alias
: the public name of the fieldtitle
: if omitted,field_name.title()
is useddescription
: if omitted and the annotation is a sub-model, the docstring of the sub-model will be usedconst
: this argument must have be the same as the field's default value if presentgt
: for numeric values (int
,float
,Decimal
), adds a validation of "greater than" and an annotation ofexclusiveMinimum
to the JSON Schemage
: for numeric values, this adds a validation of "greater than or equal" and an annotation ofminimum
to the JSON Schemalt
: for numeric values, this adds a validation of "less than" and an annotation ofexclusiveMaximum
to the JSON Schemale
: for numeric values, this adds a validation of "less than or equal" and an annotation ofmaximum
to the JSON Schemamultiple_of
: for numeric values, this adds a validation of "a multiple of" and an annotation ofmultipleOf
to the JSON Schemamin_items
: for list values, this adds a corresponding validation and an annotation ofminItems
to the JSON Schemamax_items
: for list values, this adds a corresponding validation and an annotation ofmaxItems
to the JSON Schemamin_length
: for string values, this adds a corresponding validation and an annotation ofminLength
to the JSON Schemamax_length
: for string values, this adds a corresponding validation and an annotation ofmaxLength
to the JSON Schemaregex
: for string values, this adds a Regular Expression validation generated from the passed string and an annotation ofpattern
to the JSON Schema**
any other keyword arguments (e.g.examples
) will be added verbatim to the field's schema
Instead of using Field
, the fields
property of the Config class can be used
to set all of the arguments above except default
.
Unenforced Field constraints🔗
If pydantic finds constraints which are not being enforced, an error will be raised. If you want to force the
constraint to appear in the schema, even though it's not being checked upon parsing, you can use variadic arguments
to Field()
with the raw schema attribute name:
from pydantic import BaseModel, Field, PositiveInt try: # this won't work since PositiveInt takes precedence over the # constraints defined in Field meaning they're ignored class Model(BaseModel): foo: PositiveInt = Field(..., lt=10) except ValueError as e: print(e) """ On field "foo" the following field constraints are set but not enforced: lt. For more details see https://pydantic- docs.helpmanual.io/usage/schema/#unenforced-field-constraints """ # but you can set the schema attribute directly: # (Note: here exclusiveMaximum will not be enforce) class Model(BaseModel): foo: PositiveInt = Field(..., exclusiveMaximum=10) print(Model.schema()) """ { 'title': 'Model', 'type': 'object', 'properties': { 'foo': { 'title': 'Foo', 'exclusiveMaximum': 10, 'type': 'integer', 'exclusiveMinimum': 0, }, }, 'required': ['foo'], } """ # if you find yourself needing this, an alternative is to declare # the constraints in Field (or you could use conint()) # here both constraints will be enforced: class Model(BaseModel): # Here both constraints will be applied and the schema # will be generated correctly foo: int = Field(..., gt=0, lt=10) print(Model.schema()) """ { 'title': 'Model', 'type': 'object', 'properties': { 'foo': { 'title': 'Foo', 'exclusiveMinimum': 0, 'exclusiveMaximum': 10, 'type': 'integer', }, }, 'required': ['foo'], } """
(This script is complete, it should run "as is")
Modifying schema in custom fields🔗
Custom field types can customise the schema generated for them using the __modify_schema__
class method;
see Custom Data Types for more details.
JSON Schema Types🔗
Types, custom field types, and constraints (like max_length
) are mapped to the corresponding spec formats in the
following priority order (when there is an equivalent available):
- JSON Schema Core
- JSON Schema Validation
- OpenAPI Data Types
- The standard
format
JSON field is used to define pydantic extensions for more complexstring
sub-types.
The field schema mapping from Python / pydantic to JSON Schema is done as follows:
Python type | JSON Schema Type | Additional JSON Schema | Defined in |
---|---|---|---|
bool
|
boolean
|
JSON Schema Core | |
str
|
string
|
JSON Schema Core | |
float
|
number
|
JSON Schema Core | |
int
|
integer
|
JSON Schema Validation | |
dict
|
object
|
JSON Schema Core | |
list
|
array
|
{"items": {}}
|
JSON Schema Core |
tuple
|
array
|
{"items": {}}
|
JSON Schema Core |
set
|
array
|
{"items": {}, "uniqueItems": true}
|
JSON Schema Validation |
List[str]
|
array
|
{"items": {"type": "string"}}
|
JSON Schema Validation |
And equivalently for any other sub type, e.g. List[int] .
|
|||
Tuple[str, int]
|
array
|
{"items": [{"type": "string"}, {"type": "integer"}]}
|
JSON Schema Validation |
And equivalently for any other set of subtypes. Note: If using schemas for OpenAPI, you shouldn't use this declaration, as it would not be valid in OpenAPI (although it is valid in JSON Schema). | |||
Dict[str, int]
|
object
|
{"additionalProperties": {"type": "integer"}}
|
JSON Schema Validation |
And equivalently for any other subfields for dicts. Have in mind that although you can use other types as keys for dicts with Pydantic, only strings are valid keys for JSON, and so, only str is valid as JSON Schema key types. | |||
Union[str, int]
|
anyOf
|
{"anyOf": [{"type": "string"}, {"type": "integer"}]}
|
JSON Schema Validation |
And equivalently for any other subfields for unions. | |||
Enum
|
enum
|
{"enum": [...]}
|
JSON Schema Validation |
All the literal values in the enum are included in the definition. | |||
SecretStr
|
string
|
{"writeOnly": true}
|
JSON Schema Validation |
SecretBytes
|
string
|
{"writeOnly": true}
|
JSON Schema Validation |
EmailStr
|
string
|
{"format": "email"}
|
JSON Schema Validation |
NameEmail
|
string
|
{"format": "name-email"}
|
Pydantic standard "format" extension |
AnyUrl
|
string
|
{"format": "uri"}
|
JSON Schema Validation |
bytes
|
string
|
{"format": "binary"}
|
OpenAPI |
Decimal
|
number
|
JSON Schema Core | |
UUID1
|
string
|
{"format": "uuid1"}
|
Pydantic standard "format" extension |
UUID3
|
string
|
{"format": "uuid3"}
|
Pydantic standard "format" extension |
UUID4
|
string
|
{"format": "uuid4"}
|
Pydantic standard "format" extension |
UUID5
|
string
|
{"format": "uuid5"}
|
Pydantic standard "format" extension |
UUID
|
string
|
{"format": "uuid"}
|
Pydantic standard "format" extension |
Suggested in OpenAPI. | |||
FilePath
|
string
|
{"format": "file-path"}
|
Pydantic standard "format" extension |
DirectoryPath
|
string
|
{"format": "directory-path"}
|
Pydantic standard "format" extension |
Path
|
string
|
{"format": "path"}
|
Pydantic standard "format" extension |
datetime
|
string
|
{"format": "date-time"}
|
JSON Schema Validation |
date
|
string
|
{"format": "date"}
|
JSON Schema Validation |
time
|
string
|
{"format": "time"}
|
JSON Schema Validation |
timedelta
|
number
|
{"format": "time-delta"}
|
Difference in seconds (a float ), with Pydantic standard "format" extension
|
Suggested in JSON Schema repository's issues by maintainer. | |||
Json
|
string
|
{"format": "json-string"}
|
Pydantic standard "format" extension |
IPv4Address
|
string
|
{"format": "ipv4"}
|
JSON Schema Validation |
IPv6Address
|
string
|
{"format": "ipv6"}
|
JSON Schema Validation |
IPvAnyAddress
|
string
|
{"format": "ipvanyaddress"}
|
Pydantic standard "format" extension |
IPv4 or IPv6 address as used in ipaddress module
|
|||
IPv4Interface
|
string
|
{"format": "ipv4interface"}
|
Pydantic standard "format" extension |
IPv4 interface as used in ipaddress module
|
|||
IPv6Interface
|
string
|
{"format": "ipv6interface"}
|
Pydantic standard "format" extension |
IPv6 interface as used in ipaddress module
|
|||
IPvAnyInterface
|
string
|
{"format": "ipvanyinterface"}
|
Pydantic standard "format" extension |
IPv4 or IPv6 interface as used in ipaddress module
|
|||
IPv4Network
|
string
|
{"format": "ipv4network"}
|
Pydantic standard "format" extension |
IPv4 network as used in ipaddress module
|
|||
IPv6Network
|
string
|
{"format": "ipv6network"}
|
Pydantic standard "format" extension |
IPv6 network as used in ipaddress module
|
|||
IPvAnyNetwork
|
string
|
{"format": "ipvanynetwork"}
|
Pydantic standard "format" extension |
IPv4 or IPv6 network as used in ipaddress module
|
|||
StrictBool
|
boolean
|
JSON Schema Core | |
StrictStr
|
string
|
JSON Schema Core | |
ConstrainedStr
|
string
|
JSON Schema Core | |
If the type has values declared for the constraints, they are included as validations. See the mapping for constr below.
|
|||
constr(regex='^text$', min_length=2, max_length=10)
|
string
|
{"pattern": "^text$", "minLength": 2, "maxLength": 10}
|
JSON Schema Validation |
Any argument not passed to the function (not defined) will not be included in the schema. | |||
ConstrainedInt
|
integer
|
JSON Schema Core | |
If the type has values declared for the constraints, they are included as validations. See the mapping for conint below.
|
|||
conint(gt=1, ge=2, lt=6, le=5, multiple_of=2)
|
integer
|
{"maximum": 5, "exclusiveMaximum": 6, "minimum": 2, "exclusiveMinimum": 1, "multipleOf": 2}
|
|
Any argument not passed to the function (not defined) will not be included in the schema. | |||
PositiveInt
|
integer
|
{"exclusiveMinimum": 0}
|
JSON Schema Validation |
NegativeInt
|
integer
|
{"exclusiveMaximum": 0}
|
JSON Schema Validation |
ConstrainedFloat
|
number
|
JSON Schema Core | |
If the type has values declared for the constraints, they are included as validations. See the mapping for confloat below.
|
|||
confloat(gt=1, ge=2, lt=6, le=5, multiple_of=2)
|
number
|
{"maximum": 5, "exclusiveMaximum": 6, "minimum": 2, "exclusiveMinimum": 1, "multipleOf": 2}
|
JSON Schema Validation |
Any argument not passed to the function (not defined) will not be included in the schema. | |||
PositiveFloat
|
number
|
{"exclusiveMinimum": 0}
|
JSON Schema Validation |
NegativeFloat
|
number
|
{"exclusiveMaximum": 0}
|
JSON Schema Validation |
ConstrainedDecimal
|
number
|
JSON Schema Core | |
If the type has values declared for the constraints, they are included as validations. See the mapping for condecimal below.
|
|||
condecimal(gt=1, ge=2, lt=6, le=5, multiple_of=2)
|
number
|
{"maximum": 5, "exclusiveMaximum": 6, "minimum": 2, "exclusiveMinimum": 1, "multipleOf": 2}
|
JSON Schema Validation |
Any argument not passed to the function (not defined) will not be included in the schema. | |||
BaseModel
|
object
|
JSON Schema Core | |
All the properties defined will be defined with standard JSON Schema, including submodels. | |||
Color
|
string
|
{"format": "color"}
|
Pydantic standard "format" extension |
Top-level schema generation🔗
You can also generate a top-level JSON Schema that only includes a list of models and related
sub-models in its definitions
:
import json from pydantic import BaseModel from pydantic.schema import schema class Foo(BaseModel): a: str = None class Model(BaseModel): b: Foo class Bar(BaseModel): c: int top_level_schema = schema([Model, Bar], title='My Schema') print(json.dumps(top_level_schema, indent=2))
(This script is complete, it should run "as is")
Outputs:
{ "title": "My Schema", "definitions": { "Foo": { "title": "Foo", "type": "object", "properties": { "a": { "title": "A", "type": "string" } } }, "Model": { "title": "Model", "type": "object", "properties": { "b": { "$ref": "#/definitions/Foo" } }, "required": [ "b" ] }, "Bar": { "title": "Bar", "type": "object", "properties": { "c": { "title": "C", "type": "integer" } }, "required": [ "c" ] } } }
Schema customization🔗
You can customize the generated $ref
JSON location: the definitions are always stored under the key
definitions
, but a specified prefix can be used for the references.
This is useful if you need to extend or modify the JSON Schema default definitions location. E.g. with OpenAPI:
import json from pydantic import BaseModel from pydantic.schema import schema class Foo(BaseModel): a: int class Model(BaseModel): a: Foo # Default location for OpenAPI top_level_schema = schema([Model], ref_prefix='#/components/schemas/') print(json.dumps(top_level_schema, indent=2))
(This script is complete, it should run "as is")
Outputs:
{ "definitions": { "Foo": { "title": "Foo", "type": "object", "properties": { "a": { "title": "A", "type": "integer" } }, "required": [ "a" ] }, "Model": { "title": "Model", "type": "object", "properties": { "a": { "$ref": "#/components/schemas/Foo" } }, "required": [ "a" ] } } }
It's also possible to extend/override the generated JSON schema in a model.
To do it, use the Config
sub-class attribute schema_extra
.
For example, you could add examples
to the JSON Schema:
from pydantic import BaseModel class Person(BaseModel): name: str age: int class Config: schema_extra = { 'examples': [ { 'name': 'John Doe', 'age': 25, } ] } print(Person.schema_json(indent=2))
(This script is complete, it should run "as is")
Outputs:
{ "title": "Person", "type": "object", "properties": { "name": { "title": "Name", "type": "string" }, "age": { "title": "Age", "type": "integer" } }, "required": [ "name", "age" ], "examples": [ { "name": "John Doe", "age": 25 } ] }
For more fine-grained control, you can alternatively set schema_extra
to a callable and post-process the generated schema.
The callable is passed the schema dictionary as the first and only argument, and is expected to mutate it in-place; the return value is not used.
For example, the title
key can be removed from the model's properties
:
from typing import Dict, Any, Type from pydantic import BaseModel class Person(BaseModel): name: str age: int class Config: @staticmethod def schema_extra(schema: Dict[str, Any], model: Type['Person']) -> None: for prop in schema.get('properties', {}).values(): prop.pop('title', None) print(Person.schema_json(indent=2))
(This script is complete, it should run "as is")
Outputs:
{ "title": "Person", "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "required": [ "name", "age" ] }