Field Types
Where possible pydantic uses standard library types to define fields, thus smoothing the learning curve. For many useful applications, however, no standard library type exists, so pydantic implements many commonly used types.
If no existing type suits your purpose you can also implement your own pydantic-compatible types with custom properties and validation.
Standard Library Types🔗
pydantic supports many common types from the python standard library. If you need stricter processing see Strict Types; if you need to constrain the values allowed (e.g. to require a positive int) see Constrained Types.
bool
- see Booleans below for details on how bools are validated and what values are permitted
int
- pydantic uses
int(v)
to coerce types to anint
; see this warning on loss of information during data conversion float
- similarly,
float(v)
is used to coerce values to floats str
- strings are accepted as-is,
int
float
andDecimal
are coerced usingstr(v)
,bytes
andbytearray
are converted usingv.decode()
, enums inheriting fromstr
are converted usingv.value
, and all other types cause an error bytes
bytes
are accepted as-is,bytearray
is converted usingbytes(v)
,str
are converted usingv.encode()
, andint
,float
, andDecimal
are coerced usingstr(v).encode()
list
- allows
list
,tuple
,set
,frozenset
, or generators and casts to a list; seetyping.List
below for sub-type constraints tuple
- allows
list
,tuple
,set
,frozenset
, or generators and casts to a tuple; seetyping.Tuple
below for sub-type constraints dict
dict(v)
is used to attempt to convert a dictionary; seetyping.Dict
below for sub-type constraintsset
- allows
list
,tuple
,set
,frozenset
, or generators and casts to a set; seetyping.Set
below for sub-type constraints frozenset
- allows
list
,tuple
,set
,frozenset
, or generators and casts to a frozen set; seetyping.FrozenSet
below for sub-type constraints datetime.date
- see Datetime Types below for more detail on parsing and validation
datetime.time
- see Datetime Types below for more detail on parsing and validation
datetime.datetime
- see Datetime Types below for more detail on parsing and validation
datetime.timedelta
- see Datetime Types below for more detail on parsing and validation
typing.Any
- allows any value include
None
, thus anAny
field is optional typing.TypeVar
- constrains the values allowed based on
constraints
orbound
, see TypeVar typing.Union
- see Unions below for more detail on parsing and validation
typing.Optional
Optional[x]
is simply short hand forUnion[x, None]
; see Unions below for more detail on parsing and validation and Required Fields for details about required fields that can receiveNone
as a value.typing.List
- see Typing Iterables below for more detail on parsing and validation
typing.Tuple
- see Typing Iterables below for more detail on parsing and validation
typing.Dict
- see Typing Iterables below for more detail on parsing and validation
typing.Set
- see Typing Iterables below for more detail on parsing and validation
typing.FrozenSet
- see Typing Iterables below for more detail on parsing and validation
typing.Sequence
- see Typing Iterables below for more detail on parsing and validation
typing.Iterable
- this is reserved for iterables that shouldn't be consumed. See Infinite Generators below for more detail on parsing and validation
typing.Type
- see Type below for more detail on parsing and validation
typing.Callable
- see Callable below for more detail on parsing and validation
typing.Pattern
- will cause the input value to be passed to
re.compile(v)
to create a regex pattern ipaddress.IPv4Address
- simply uses the type itself for validation by passing the value to
IPv4Address(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv4Interface
- simply uses the type itself for validation by passing the value to
IPv4Address(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv4Network
- simply uses the type itself for validation by passing the value to
IPv4Network(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv6Address
- simply uses the type itself for validation by passing the value to
IPv6Address(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv6Interface
- simply uses the type itself for validation by passing the value to
IPv6Interface(v)
; see Pydantic Types for other custom IP address types ipaddress.IPv6Network
- simply uses the type itself for validation by passing the value to
IPv6Network(v)
; see Pydantic Types for other custom IP address types enum.Enum
- checks that the value is a valid member of the enum; see Enums and Choices for more details
enum.IntEnum
- checks that the value is a valid member of the integer enum; see Enums and Choices for more details
decimal.Decimal
- pydantic attempts to convert the value to a string, then passes the string to
Decimal(v)
pathlib.Path
- simply uses the type itself for validation by passing the value to
Path(v)
; see Pydantic Types for other more strict path types uuid.UUID
- strings and bytes (converted to strings) are passed to
UUID(v)
; see Pydantic Types for other stricter UUID types ByteSize
- converts a bytes string with units to bytes
Typing Iterables🔗
pydantic uses standard library typing
types as defined in PEP 484 to define complex objects.
from typing import Dict, FrozenSet, List, Optional, Sequence, Set, Tuple, Union from pydantic import BaseModel class Model(BaseModel): simple_list: list = None list_of_ints: List[int] = None simple_tuple: tuple = None tuple_of_different_types: Tuple[int, float, str, bool] = None simple_dict: dict = None dict_str_float: Dict[str, float] = None simple_set: set = None set_bytes: Set[bytes] = None frozen_set: FrozenSet[int] = None str_or_bytes: Union[str, bytes] = None none_or_str: Optional[str] = None sequence_of_ints: Sequence[int] = None compound: Dict[Union[str, bytes], List[Set[int]]] = None print(Model(simple_list=['1', '2', '3']).simple_list) #> ['1', '2', '3'] print(Model(list_of_ints=['1', '2', '3']).list_of_ints) #> [1, 2, 3] print(Model(simple_dict={'a': 1, b'b': 2}).simple_dict) #> {'a': 1, b'b': 2} print(Model(dict_str_float={'a': 1, b'b': 2}).dict_str_float) #> {'a': 1.0, 'b': 2.0} print(Model(simple_tuple=[1, 2, 3, 4]).simple_tuple) #> (1, 2, 3, 4) print(Model(tuple_of_different_types=[4, 3, 2, 1]).tuple_of_different_types) #> (4, 3.0, '2', True) print(Model(sequence_of_ints=[1, 2, 3, 4]).sequence_of_ints) #> [1, 2, 3, 4] print(Model(sequence_of_ints=(1, 2, 3, 4)).sequence_of_ints) #> (1, 2, 3, 4)
(This script is complete, it should run "as is")
Infinite Generators🔗
If you have a generator you can use Sequence
as described above. In that case, the
generator will be consumed and stored on the model as a list and its values will be
validated with the sub-type of Sequence
(e.g. int
in Sequence[int]
).
But if you have a generator that you don't want to be consumed, e.g. an infinite
generator or a remote data loader, you can define its type with Iterable
:
from typing import Iterable from pydantic import BaseModel class Model(BaseModel): infinite: Iterable[int] def infinite_ints(): i = 0 while True: yield i i += 1 m = Model(infinite=infinite_ints()) print(m) #> infinite=<generator object infinite_ints at 0x7fa2496a23d0> for i in m.infinite: print(i) #> 0 #> 1 #> 2 #> 3 #> 4 #> 5 #> 6 #> 7 #> 8 #> 9 #> 10 if i == 10: break
(This script is complete, it should run "as is")
Warning
Iterable
fields only perform a simple check that the argument is iterable and
won't be consumed.
No validation of their values is performed as it cannot be done without consuming the iterable.
Tip
If you want to validate the values of an infinite generator you can create a separate model and use it while consuming the generator, reporting the validation errors as appropriate.
pydantic can't validate the values automatically for you because it would require consuming the infinite generator.
Validating the first value🔗
You can create a validator to validate the first value in an infinite generator and still not consume it entirely.
import itertools from typing import Iterable from pydantic import BaseModel, validator, ValidationError from pydantic.fields import ModelField class Model(BaseModel): infinite: Iterable[int] @validator('infinite') # You don't need to add the "ModelField", but it will help your # editor give you completion and catch errors def infinite_first_int(cls, iterable, field: ModelField): first_value = next(iterable) if field.sub_fields: # The Iterable had a parameter type, in this case it's int # We use it to validate the first value sub_field = field.sub_fields[0] v, error = sub_field.validate(first_value, {}, loc='first_value') if error: raise ValidationError([error], cls) # This creates a new generator that returns the first value and then # the rest of the values from the (already started) iterable return itertools.chain([first_value], iterable) def infinite_ints(): i = 0 while True: yield i i += 1 m = Model(infinite=infinite_ints()) print(m) #> infinite=<itertools.chain object at 0x7fa249671290> def infinite_strs(): while True: for letter in 'allthesingleladies': yield letter try: Model(infinite=infinite_strs()) except ValidationError as e: print(e) """ 1 validation error for Model infinite -> first_value value is not a valid integer (type=type_error.integer) """
(This script is complete, it should run "as is")
Unions🔗
The Union
type allows a model attribute to accept different types, e.g.:
Warning
This script is complete, it should run "as is". However, it may not reflect the desired behavior; see below.
from uuid import UUID from typing import Union from pydantic import BaseModel class User(BaseModel): id: Union[int, str, UUID] name: str user_01 = User(id=123, name='John Doe') print(user_01) #> id=123 name='John Doe' print(user_01.id) #> 123 user_02 = User(id='1234', name='John Doe') print(user_02) #> id=1234 name='John Doe' print(user_02.id) #> 1234 user_03_uuid = UUID('cf57432e-809e-4353-adbd-9d5c0d733868') user_03 = User(id=user_03_uuid, name='John Doe') print(user_03) #> id=275603287559914445491632874575877060712 name='John Doe' print(user_03.id) #> 275603287559914445491632874575877060712 print(user_03_uuid.int) #> 275603287559914445491632874575877060712
However, as can be seen above, pydantic will attempt to 'match' any of the types defined under Union
and will use
the first one that matches. In the above example the id
of user_03
was defined as a uuid.UUID
class (which
is defined under the attribute's Union
annotation) but as the uuid.UUID
can be marshalled into an int
it
chose to match against the int
type and disregarded the other types.
As such, it is recommended that, when defining Union
annotations, the most specific type is included first and
followed by less specific types. In the above example, the UUID
class should precede the int
and str
classes to preclude the unexpected representation as such:
from uuid import UUID from typing import Union from pydantic import BaseModel class User(BaseModel): id: Union[UUID, int, str] name: str user_03_uuid = UUID('cf57432e-809e-4353-adbd-9d5c0d733868') user_03 = User(id=user_03_uuid, name='John Doe') print(user_03) #> id=UUID('cf57432e-809e-4353-adbd-9d5c0d733868') name='John Doe' print(user_03.id) #> cf57432e-809e-4353-adbd-9d5c0d733868 print(user_03_uuid.int) #> 275603287559914445491632874575877060712
(This script is complete, it should run "as is")
Tip
The type Optional[x]
is a shorthand for Union[x, None]
.
Optional[x]
can also be used to specify a required field that can take None
as a value.
See more details in Required Fields.
Enums and Choices🔗
pydantic uses python's standard enum
classes to define choices.
from enum import Enum, IntEnum from pydantic import BaseModel, ValidationError class FruitEnum(str, Enum): pear = 'pear' banana = 'banana' class ToolEnum(IntEnum): spanner = 1 wrench = 2 class CookingModel(BaseModel): fruit: FruitEnum = FruitEnum.pear tool: ToolEnum = ToolEnum.spanner print(CookingModel()) #> fruit=<FruitEnum.pear: 'pear'> tool=<ToolEnum.spanner: 1> print(CookingModel(tool=2, fruit='banana')) #> fruit=<FruitEnum.banana: 'banana'> tool=<ToolEnum.wrench: 2> try: CookingModel(fruit='other') except ValidationError as e: print(e) """ 1 validation error for CookingModel fruit value is not a valid enumeration member; permitted: 'pear', 'banana' (type=type_error.enum; enum_values=[<FruitEnum.pear: 'pear'>, <FruitEnum.banana: 'banana'>]) """
(This script is complete, it should run "as is")
Datetime Types🔗
Pydantic supports the following datetime types:
-
datetime
fields can be:datetime
, existingdatetime
objectint
orfloat
, assumed as Unix time, i.e. seconds (if <=2e10
) or milliseconds (if >2e10
) since 1 January 1970-
str
, following formats work:YYYY-MM-DD[T]HH:MM[:SS[.ffffff]][Z[±]HH[:]MM]]]
int
orfloat
as a string (assumed as Unix time)
-
date
fields can be:date
, existingdate
objectint
orfloat
, seedatetime
-
str
, following formats work:YYYY-MM-DD
int
orfloat
, seedatetime
-
time
fields can be:time
, existingtime
object-
str
, following formats work:HH:MM[:SS[.ffffff]]
-
timedelta
fields can be:timedelta
, existingtimedelta
objectint
orfloat
, assumed as seconds-
str
, following formats work:[-][DD ][HH:MM]SS[.ffffff]
[±]P[DD]DT[HH]H[MM]M[SS]S
(ISO 8601 format for timedelta)
from datetime import date, datetime, time, timedelta from pydantic import BaseModel class Model(BaseModel): d: date = None dt: datetime = None t: time = None td: timedelta = None m = Model( d=1966280412345.6789, dt='2032-04-23T10:20:30.400+02:30', t=time(4, 8, 16), td='P3DT12H30M5S' ) print(m.dict()) """ { 'd': datetime.date(2032, 4, 22), 'dt': datetime.datetime(2032, 4, 23, 10, 20, 30, 400000, tzinfo=datetime.timezone(datetime.timedelta(seconds=9000))), 't': datetime.time(4, 8, 16), 'td': datetime.timedelta(days=3, seconds=45005), } """
Booleans🔗
Warning
The logic for parsing bool
fields has changed as of version v1.0.
Prior to v1.0, bool
parsing never failed, leading to some unexpected results.
The new logic is described below.
A standard bool
field will raise a ValidationError
if the value is not one of the following:
- A valid boolean (i.e.
True
orFalse
), - The integers
0
or1
, - a
str
which when converted to lower case is one of'0', 'off', 'f', 'false', 'n', 'no', '1', 'on', 't', 'true', 'y', 'yes'
- a
bytes
which is valid (per the previous rule) when decoded tostr
Note
If you want stricter boolean logic (e.g. a field which only permits True
and False
) you can
use StrictBool
.
Here is a script demonstrating some of these behaviors:
from pydantic import BaseModel, ValidationError class BooleanModel(BaseModel): bool_value: bool print(BooleanModel(bool_value=False)) #> bool_value=False print(BooleanModel(bool_value='False')) #> bool_value=False try: BooleanModel(bool_value=[]) except ValidationError as e: print(str(e)) """ 1 validation error for BooleanModel bool_value value could not be parsed to a boolean (type=type_error.bool) """
(This script is complete, it should run "as is")
Callable🔗
Fields can also be of type Callable
:
from typing import Callable from pydantic import BaseModel class Foo(BaseModel): callback: Callable[[int], int] m = Foo(callback=lambda x: x) print(m) #> callback=<function <lambda> at 0x7fa249638320>
(This script is complete, it should run "as is")
Warning
Callable fields only perform a simple check that the argument is callable; no validation of arguments, their types, or the return type is performed.
Type🔗
pydantic supports the use of Type[T]
to specify that a field may only accept classes (not instances)
that are subclasses of T
.
from typing import Type from pydantic import BaseModel from pydantic import ValidationError class Foo: pass class Bar(Foo): pass class Other: pass class SimpleModel(BaseModel): just_subclasses: Type[Foo] SimpleModel(just_subclasses=Foo) SimpleModel(just_subclasses=Bar) try: SimpleModel(just_subclasses=Other) except ValidationError as e: print(e) """ 1 validation error for SimpleModel just_subclasses subclass of Foo expected (type=type_error.subclass; expected_class=Foo) """
(This script is complete, it should run "as is")
You may also use Type
to specify that any class is allowed.
from typing import Type from pydantic import BaseModel, ValidationError class Foo: pass class LenientSimpleModel(BaseModel): any_class_goes: Type LenientSimpleModel(any_class_goes=int) LenientSimpleModel(any_class_goes=Foo) try: LenientSimpleModel(any_class_goes=Foo()) except ValidationError as e: print(e) """ 1 validation error for LenientSimpleModel any_class_goes a class is expected (type=type_error.class) """
(This script is complete, it should run "as is")
TypeVar🔗
TypeVar
is supported either unconstrained, constrained or with a bound.
from typing import TypeVar from pydantic import BaseModel Foobar = TypeVar('Foobar') BoundFloat = TypeVar('BoundFloat', bound=float) IntStr = TypeVar('IntStr', int, str) class Model(BaseModel): a: Foobar # equivalent of ": Any" b: BoundFloat # equivalent of ": float" c: IntStr # equivalent of ": Union[int, str]" print(Model(a=[1], b=4.2, c='x')) #> a=[1] b=4.2 c='x' # a may be None and is therefore optional print(Model(b=1, c=1)) #> a=None b=1.0 c=1
(This script is complete, it should run "as is")
Literal Type🔗
Note
This is a new feature of the python standard library as of python 3.8; prior to python 3.8, it requires the typing-extensions package.
pydantic supports the use of typing.Literal
(or typing_extensions.Literal
prior to python 3.8)
as a lightweight way to specify that a field may accept only specific literal values:
from typing_extensions import Literal from pydantic import BaseModel, ValidationError class Pie(BaseModel): flavor: Literal['apple', 'pumpkin'] Pie(flavor='apple') Pie(flavor='pumpkin') try: Pie(flavor='cherry') except ValidationError as e: print(str(e)) """ 1 validation error for Pie flavor unexpected value; permitted: 'apple', 'pumpkin' (type=value_error.const; given=cherry; permitted=('apple', 'pumpkin')) """
(This script is complete, it should run "as is")
One benefit of this field type is that it can be used to check for equality with one or more specific values without needing to declare custom validators:
from typing import ClassVar, List, Union from typing_extensions import Literal from pydantic import BaseModel, ValidationError class Cake(BaseModel): kind: Literal['cake'] required_utensils: ClassVar[List[str]] = ['fork', 'knife'] class IceCream(BaseModel): kind: Literal['icecream'] required_utensils: ClassVar[List[str]] = ['spoon'] class Meal(BaseModel): dessert: Union[Cake, IceCream] print(type(Meal(dessert={'kind': 'cake'}).dessert).__name__) #> Cake print(type(Meal(dessert={'kind': 'icecream'}).dessert).__name__) #> IceCream try: Meal(dessert={'kind': 'pie'}) except ValidationError as e: print(str(e)) """ 2 validation errors for Meal dessert -> kind unexpected value; permitted: 'cake' (type=value_error.const; given=pie; permitted=('cake',)) dessert -> kind unexpected value; permitted: 'icecream' (type=value_error.const; given=pie; permitted=('icecream',)) """
(This script is complete, it should run "as is")
With proper ordering in an annotated Union
, you can use this to parse types of decreasing specificity:
from typing import Optional, Union from typing_extensions import Literal from pydantic import BaseModel class Dessert(BaseModel): kind: str class Pie(Dessert): kind: Literal['pie'] flavor: Optional[str] class ApplePie(Pie): flavor: Literal['apple'] class PumpkinPie(Pie): flavor: Literal['pumpkin'] class Meal(BaseModel): dessert: Union[ApplePie, PumpkinPie, Pie, Dessert] print(type(Meal(dessert={'kind': 'pie', 'flavor': 'apple'}).dessert).__name__) #> ApplePie print(type(Meal(dessert={'kind': 'pie', 'flavor': 'pumpkin'}).dessert).__name__) #> PumpkinPie print(type(Meal(dessert={'kind': 'pie'}).dessert).__name__) #> Pie print(type(Meal(dessert={'kind': 'cake'}).dessert).__name__) #> Dessert
(This script is complete, it should run "as is")
Pydantic Types🔗
pydantic also provides a variety of other useful types:
FilePath
- like
Path
, but the path must exist and be a file DirectoryPath
- like
Path
, but the path must exist and be a directory EmailStr
- requires email-validator to be installed; the input string must be a valid email address, and the output is a simple string
NameEmail
- requires email-validator to be installed;
the input string must be either a valid email address or in the format
Fred Bloggs <fred.bloggs@example.com>
, and the output is aNameEmail
object which has two properties:name
andemail
. ForFred Bloggs <fred.bloggs@example.com>
the name would be"Fred Bloggs"
; forfred.bloggs@example.com
it would be"fred.bloggs"
. PyObject
- expects a string and loads the python object importable at that dotted path;
e.g. if
'math.cos'
was provided, the resulting field value would be the functioncos
Color
- for parsing HTML and CSS colors; see Color Type
Json
- a special type wrapper which loads JSON before parsing; see JSON Type
PaymentCardNumber
- for parsing and validating payment cards; see payment cards
AnyUrl
- any URL; see URLs
AnyHttpUrl
- an HTTP URL; see URLs
HttpUrl
- a stricter HTTP URL; see URLs
PostgresDsn
- a postgres DSN style URL; see URLs
RedisDsn
- a redis DSN style URL; see URLs
stricturl
- a type method for arbitrary URL constraints; see URLs
UUID1
- requires a valid UUID of type 1; see
UUID
above UUID3
- requires a valid UUID of type 3; see
UUID
above UUID4
- requires a valid UUID of type 4; see
UUID
above UUID5
- requires a valid UUID of type 5; see
UUID
above SecretBytes
- bytes where the value is kept partially secret; see Secrets
SecretStr
- string where the value is kept partially secret; see Secrets
IPvAnyAddress
- allows either an
IPv4Address
or anIPv6Address
IPvAnyInterface
- allows either an
IPv4Interface
or anIPv6Interface
IPvAnyNetwork
- allows either an
IPv4Network
or anIPv6Network
NegativeFloat
- allows a float which is negative; uses standard
float
parsing then checks the value is less than 0; see Constrained Types NegativeInt
- allows an int which is negative; uses standard
int
parsing then checks the value is less than 0; see Constrained Types PositiveFloat
- allows a float which is positive; uses standard
float
parsing then checks the value is greater than 0; see Constrained Types PositiveInt
- allows an int which is positive; uses standard
int
parsing then checks the value is greater than 0; see Constrained Types conbytes
- type method for constraining bytes; see Constrained Types
condecimal
- type method for constraining Decimals; see Constrained Types
confloat
- type method for constraining floats; see Constrained Types
conint
- type method for constraining ints; see Constrained Types
conlist
- type method for constraining lists; see Constrained Types
constr
- type method for constraining strs; see Constrained Types
URLs🔗
For URI/URL validation the following types are available:
AnyUrl
: any scheme allowed, TLD not requiredAnyHttpUrl
: schemahttp
orhttps
, TLD not requiredHttpUrl
: schemahttp
orhttps
, TLD required, max length 2083PostgresDsn
: schemapostgres
orpostgresql
, userinfo required, TLD not requiredRedisDsn
: schemaredis
, userinfo required, tld not requiredstricturl
, method with the following keyword arguments:strip_whitespace: bool = True
min_length: int = 1
max_length: int = 2 ** 16
tld_required: bool = True
allowed_schemes: Optional[Set[str]] = None
The above types (which all inherit from AnyUrl
) will attempt to give descriptive errors when invalid URLs are
provided:
from pydantic import BaseModel, HttpUrl, ValidationError class MyModel(BaseModel): url: HttpUrl m = MyModel(url='http://www.example.com') print(m.url) #> http://www.example.com try: MyModel(url='ftp://invalid.url') except ValidationError as e: print(e) """ 1 validation error for MyModel url URL scheme not permitted (type=value_error.url.scheme; allowed_schemes={'http', 'https'}) """ try: MyModel(url='not a url') except ValidationError as e: print(e) """ 1 validation error for MyModel url invalid or missing URL scheme (type=value_error.url.scheme) """
(This script is complete, it should run "as is")
If you require a custom URI/URL type, it can be created in a similar way to the types defined above.
URL Properties🔗
Assuming an input URL of http://samuel:pass@example.com:8000/the/path/?query=here#fragment=is;this=bit
,
the above types export the following properties:
scheme
: always set - the url schema (http
above)host
: always set - the url host (example.com
above)-
host_type
: always set - describes the type of host, either: -
domain
: e.g.example.com
, int_domain
: international domain, see below, e.g.exampl£e.org
,ipv4
: an IP V4 address, e.g.127.0.0.1
, or-
ipv6
: an IP V6 address, e.g.2001:db8:ff00:42
-
user
: optional - the username if included (samuel
above) password
: optional - the password if included (pass
above)tld
: optional - the top level domain (com
above), Note: this will be wrong for any two-level domain, e.g. "co.uk". You'll need to implement your own list of TLDs if you require full TLD validationport
: optional - the port (8000
above)path
: optional - the path (/the/path/
above)query
: optional - the URL query (aka GET arguments or "search string") (query=here
above)fragment
: optional - the fragment (fragment=is;this=bit
above)
If further validation is required, these properties can be used by validators to enforce specific behaviour:
from pydantic import BaseModel, HttpUrl, PostgresDsn, ValidationError, validator class MyModel(BaseModel): url: HttpUrl m = MyModel(url='http://www.example.com') # the repr() method for a url will display all properties of the url print(repr(m.url)) #> HttpUrl('http://www.example.com', scheme='http', host='www.example.com', #> tld='com', host_type='domain') print(m.url.scheme) #> http print(m.url.host) #> www.example.com print(m.url.host_type) #> domain print(m.url.port) #> None class MyDatabaseModel(BaseModel): db: PostgresDsn @validator('db') def check_db_name(cls, v): assert v.path and len(v.path) > 1, 'database must be provided' return v m = MyDatabaseModel(db='postgres://user:pass@localhost:5432/foobar') print(m.db) #> postgres://user:pass@localhost:5432/foobar try: MyDatabaseModel(db='postgres://user:pass@localhost:5432') except ValidationError as e: print(e) """ 1 validation error for MyDatabaseModel db database must be provided (type=assertion_error) """
(This script is complete, it should run "as is")
International Domains🔗
"International domains" (e.g. a URL where the host or TLD includes non-ascii characters) will be encoded via punycode (see this article for a good description of why this is important):
from pydantic import BaseModel, HttpUrl class MyModel(BaseModel): url: HttpUrl m1 = MyModel(url='http://puny£code.com') print(m1.url) #> http://xn--punycode-eja.com print(m1.url.host_type) #> int_domain m2 = MyModel(url='https://www.аррӏе.com/') print(m2.url) #> https://www.xn--80ak6aa92e.com/ print(m2.url.host_type) #> int_domain m3 = MyModel(url='https://www.example.珠宝/') print(m3.url) #> https://www.example.xn--pbt977c/ print(m3.url.host_type) #> int_domain
(This script is complete, it should run "as is")
Warning
Underscores in Hostnames🔗
In pydantic underscores are allowed in all parts of a domain except the tld. Technically this might be wrong - in theory the hostname cannot have underscores, but subdomains can.
To explain this; consider the following two cases:
exam_ple.co.uk
: the hostname isexam_ple
, which should not be allowed since it contains an underscorefoo_bar.example.com
the hostname isexample
, which should be allowed since the underscore is in the subdomain
Without having an exhaustive list of TLDs, it would be impossible to differentiate between these two. Therefore underscores are allowed, but you can always do further validation in a validator if desired.
Also, Chrome, Firefox, and Safari all currently accept http://exam_ple.com
as a URL, so we're in good
(or at least big) company.
Color Type🔗
You can use the Color
data type for storing colors as per
CSS3 specification. Colors can be defined via:
- name (e.g.
"Black"
,"azure"
) - hexadecimal value
(e.g.
"0x000"
,"#FFFFFF"
,"7fffd4"
) - RGB/RGBA tuples (e.g.
(255, 255, 255)
,(255, 255, 255, 0.5)
) - RGB/RGBA strings
(e.g.
"rgb(255, 255, 255)"
,"rgba(255, 255, 255, 0.5)"
) - HSL strings
(e.g.
"hsl(270, 60%, 70%)"
,"hsl(270, 60%, 70%, .5)"
)
from pydantic import BaseModel, ValidationError from pydantic.color import Color c = Color('ff00ff') print(c.as_named()) #> magenta print(c.as_hex()) #> #f0f c2 = Color('green') print(c2.as_rgb_tuple()) #> (0, 128, 0) print(c2.original()) #> green print(repr(Color('hsl(180, 100%, 50%)'))) #> Color('cyan', rgb=(0, 255, 255)) class Model(BaseModel): color: Color print(Model(color='purple')) #> color=Color('purple', rgb=(128, 0, 128)) try: Model(color='hello') except ValidationError as e: print(e) """ 1 validation error for Model color value is not a valid color: string not recognised as a valid color (type=value_error.color; reason=string not recognised as a valid color) """
(This script is complete, it should run "as is")
Color
has the following methods:
original
- the original string or tuple passed to
Color
as_named
- returns a named CSS3 color; fails if the alpha channel is set or no such color exists unless
fallback=True
is supplied, in which case it falls back toas_hex
as_hex
- returns a string in the format
#fff
or#ffffff
; will contain 4 (or 8) hex values if the alpha channel is set, e.g.#7f33cc26
as_rgb
- returns a string in the format
rgb(<red>, <green>, <blue>)
, orrgba(<red>, <green>, <blue>, <alpha>)
if the alpha channel is set as_rgb_tuple
- returns a 3- or 4-tuple in RGB(a) format. The
alpha
keyword argument can be used to define whether the alpha channel should be included; options:True
- always include,False
- never include,None
(default) - include if set as_hsl
- string in the format
hsl(<hue deg>, <saturation %>, <lightness %>)
orhsl(<hue deg>, <saturation %>, <lightness %>, <alpha>)
if the alpha channel is set as_hsl_tuple
- returns a 3- or 4-tuple in HSL(a) format. The
alpha
keyword argument can be used to define whether the alpha channel should be included; options:True
- always include,False
- never include,None
(the default) - include if set
The __str__
method for Color
returns self.as_named(fallback=True)
.
Note
the as_hsl*
refer to hue, saturation, lightness "HSL" as used in html and most of the world, not
"HLS" as used in python's colorsys
.
Secret Types🔗
You can use the SecretStr
and the SecretBytes
data types for storing sensitive information
that you do not want to be visible in logging or tracebacks.
The SecretStr
and SecretBytes
will be formatted as either '**********'
or ''
on conversion to json.
from pydantic import BaseModel, SecretStr, SecretBytes, ValidationError class SimpleModel(BaseModel): password: SecretStr password_bytes: SecretBytes sm = SimpleModel(password='IAmSensitive', password_bytes=b'IAmSensitiveBytes') # Standard access methods will not display the secret print(sm) #> password=SecretStr('**********') password_bytes=SecretBytes(b'**********') print(sm.password) #> ********** print(sm.json()) #> {"password": "**********", "password_bytes": "**********"} # Use get_secret_value method to see the secret's content. print(sm.password.get_secret_value()) #> IAmSensitive print(sm.password_bytes.get_secret_value()) #> b'IAmSensitiveBytes' try: SimpleModel(password=[1, 2, 3], password_bytes=[1, 2, 3]) except ValidationError as e: print(e) """ 2 validation errors for SimpleModel password str type expected (type=type_error.str) password_bytes byte type expected (type=type_error.bytes) """
(This script is complete, it should run "as is")
Json Type🔗
You can use Json
data type to make pydantic first load a raw JSON string.
It can also optionally be used to parse the loaded object into another type base on
the type Json
is parameterised with:
from typing import List from pydantic import BaseModel, Json, ValidationError class SimpleJsonModel(BaseModel): json_obj: Json class ComplexJsonModel(BaseModel): json_obj: Json[List[int]] print(SimpleJsonModel(json_obj='{"b": 1}')) #> json_obj={'b': 1} print(ComplexJsonModel(json_obj='[1, 2, 3]')) #> json_obj=[1, 2, 3] try: ComplexJsonModel(json_obj=12) except ValidationError as e: print(e) """ 1 validation error for ComplexJsonModel json_obj JSON object must be str, bytes or bytearray (type=type_error.json) """ try: ComplexJsonModel(json_obj='[a, b]') except ValidationError as e: print(e) """ 1 validation error for ComplexJsonModel json_obj Invalid JSON (type=value_error.json) """ try: ComplexJsonModel(json_obj='["a", "b"]') except ValidationError as e: print(e) """ 2 validation errors for ComplexJsonModel json_obj -> 0 value is not a valid integer (type=type_error.integer) json_obj -> 1 value is not a valid integer (type=type_error.integer) """
(This script is complete, it should run "as is")
Payment Card Numbers🔗
The PaymentCardNumber
type validates payment cards
(such as a debit or credit card).
from datetime import date from pydantic import BaseModel from pydantic.types import PaymentCardBrand, PaymentCardNumber, constr class Card(BaseModel): name: constr(strip_whitespace=True, min_length=1) number: PaymentCardNumber exp: date @property def brand(self) -> PaymentCardBrand: return self.number.brand @property def expired(self) -> bool: return self.exp < date.today() card = Card( name='Georg Wilhelm Friedrich Hegel', number='4000000000000002', exp=date(2023, 9, 30) ) assert card.number.brand == PaymentCardBrand.visa assert card.number.bin == '400000' assert card.number.last4 == '0002' assert card.number.masked == '400000******0002'
(This script is complete, it should run "as is")
PaymentCardBrand
can be one of the following based on the BIN:
PaymentCardBrand.amex
PaymentCardBrand.mastercard
PaymentCardBrand.visa
PaymentCardBrand.other
The actual validation verifies the card number is:
- a
str
of only digits - luhn valid
- the correct length based on the BIN, if Amex, Mastercard or Visa, and between 12 and 19 digits for all other brands
Constrained Types🔗
The value of numerous common types can be restricted using con*
type functions:
from decimal import Decimal from pydantic import ( BaseModel, NegativeFloat, NegativeInt, PositiveFloat, PositiveInt, conbytes, condecimal, confloat, conint, conlist, constr, Field, ) class Model(BaseModel): short_bytes: conbytes(min_length=2, max_length=10) strip_bytes: conbytes(strip_whitespace=True) short_str: constr(min_length=2, max_length=10) regex_str: constr(regex='apple (pie|tart|sandwich)') strip_str: constr(strip_whitespace=True) big_int: conint(gt=1000, lt=1024) mod_int: conint(multiple_of=5) pos_int: PositiveInt neg_int: NegativeInt big_float: confloat(gt=1000, lt=1024) unit_interval: confloat(ge=0, le=1) mod_float: confloat(multiple_of=0.5) pos_float: PositiveFloat neg_float: NegativeFloat short_list: conlist(int, min_items=1, max_items=4) decimal_positive: condecimal(gt=0) decimal_negative: condecimal(lt=0) decimal_max_digits_and_places: condecimal(max_digits=2, decimal_places=2) mod_decimal: condecimal(multiple_of=Decimal('0.25')) bigger_int: int = Field(..., gt=10000)
(This script is complete, it should run "as is")
Where Field
refers to the field function.
Strict Types🔗
You can use the StrictStr
, StrictInt
, StrictFloat
, and StrictBool
types
to prevent coercion from compatible types.
These types will only pass validation when the validated value is of the respective type or is a subtype of that type.
This behavior is also exposed via the strict
field of the ConstrainedStr
, ConstrainedFloat
and
ConstrainedInt
classes and can be combined with a multitude of complex validation rules.
The following caveats apply:
StrictInt
(and thestrict
option ofConstrainedInt
) will not acceptbool
types, even thoughbool
is a subclass ofint
in Python. Other subclasses will work.StrictFloat
(and thestrict
option ofConstrainedFloat
) will not acceptint
.
from pydantic import ( BaseModel, confloat, StrictBool, StrictInt, ValidationError ) class StrictIntModel(BaseModel): strict_int: StrictInt try: StrictIntModel(strict_int=3.14159) except ValidationError as e: print(e) """ 1 validation error for StrictIntModel strict_int value is not a valid integer (type=type_error.integer) """ class ConstrainedFloatModel(BaseModel): constrained_float: confloat(strict=True, ge=0.0) try: ConstrainedFloatModel(constrained_float=3) except ValidationError as e: print(e) """ 1 validation error for ConstrainedFloatModel constrained_float value is not a valid float (type=type_error.float) """ try: ConstrainedFloatModel(constrained_float=-1.23) except ValidationError as e: print(e) """ 1 validation error for ConstrainedFloatModel constrained_float ensure this value is greater than or equal to 0.0 (type=value_error.number.not_ge; limit_value=0.0) """ class StrictBoolModel(BaseModel): strict_bool: StrictBool try: StrictBoolModel(strict_bool='False') except ValidationError as e: print(str(e)) """ 1 validation error for StrictBoolModel strict_bool value is not a valid boolean (type=value_error.strictbool) """
(This script is complete, it should run "as is")
ByteSize🔗
You can use the ByteSize
data type to convert byte string representation to
raw bytes and print out human readable versions of the bytes as well.
Info
Note that 1b
will be parsed as "1 byte" and not "1 bit".
from pydantic import BaseModel, ByteSize class MyModel(BaseModel): size: ByteSize print(MyModel(size=52000).size) #> 52000 print(MyModel(size='3000 KiB').size) #> 3072000 m = MyModel(size='50 PB') print(m.size.human_readable()) #> 44.4PiB print(m.size.human_readable(decimal=True)) #> 50.0PB print(m.size.to('TiB')) #> 45474.73508864641
(This script is complete, it should run "as is")
Custom Data Types🔗
You can also define your own custom data types. There are several ways to achieve it.
Classes with __get_validators__
🔗
You use a custom class with a classmethod __get_validators__
. It will be called
to get validators to parse and validate the input data.
Tip
These validators have the same semantics as in Validators, you can
declare a parameter config
, field
, etc.
import re from pydantic import BaseModel # https://en.wikipedia.org/wiki/Postcodes_in_the_United_Kingdom#Validation post_code_regex = re.compile( r'(?:' r'([A-Z]{1,2}[0-9][A-Z0-9]?|ASCN|STHL|TDCU|BBND|[BFS]IQQ|PCRN|TKCA) ?' r'([0-9][A-Z]{2})|' r'(BFPO) ?([0-9]{1,4})|' r'(KY[0-9]|MSR|VG|AI)[ -]?[0-9]{4}|' r'([A-Z]{2}) ?([0-9]{2})|' r'(GE) ?(CX)|' r'(GIR) ?(0A{2})|' r'(SAN) ?(TA1)' r')' ) class PostCode(str): """ Partial UK postcode validation. Note: this is just an example, and is not intended for use in production; in particular this does NOT guarantee a postcode exists, just that it has a valid format. """ @classmethod def __get_validators__(cls): # one or more validators may be yielded which will be called in the # order to validate the input, each validator will receive as an input # the value returned from the previous validator yield cls.validate @classmethod def __modify_schema__(cls, field_schema): # __modify_schema__ should mutate the dict it receives in place, # the returned value will be ignored field_schema.update( # simplified regex here for brevity, see the wikipedia link above pattern='^[A-Z]{1,2}[0-9][A-Z0-9]? ?[0-9][A-Z]{2}$', # some example postcodes examples=['SP11 9DG', 'w1j7bu'], ) @classmethod def validate(cls, v): if not isinstance(v, str): raise TypeError('string required') m = post_code_regex.fullmatch(v.upper()) if not m: raise ValueError('invalid postcode format') # you could also return a string here which would mean model.post_code # would be a string, pydantic won't care but you could end up with some # confusion since the value's type won't match the type annotation # exactly return cls(f'{m.group(1)} {m.group(2)}') def __repr__(self): return f'PostCode({super().__repr__()})' class Model(BaseModel): post_code: PostCode model = Model(post_code='sw8 5el') print(model) #> post_code=PostCode('SW8 5EL') print(model.post_code) #> SW8 5EL print(Model.schema()) """ { 'title': 'Model', 'type': 'object', 'properties': { 'post_code': { 'title': 'Post Code', 'type': 'string', 'pattern': '^[A-Z]{1,2}[0-9][A-Z0-9]? ?[0-9][A-Z]{2}$', 'examples': ['SP11 9DG', 'w1j7bu'], }, }, 'required': ['post_code'], } """
(This script is complete, it should run "as is")
Similar validation could be achieved using constr(regex=...)
except the value won't be
formatted with a space, the schema would just include the full pattern and the returned value would be a vanilla string.
See Schema for more details on how the model's schema is generated.
Arbitrary Types Allowed🔗
You can allow arbitrary types using the arbitrary_types_allowed
config in the
Model Config.
from pydantic import BaseModel, ValidationError # This is not a pydantic model, it's an arbitrary class class Pet: def __init__(self, name: str): self.name = name class Model(BaseModel): pet: Pet owner: str class Config: arbitrary_types_allowed = True pet = Pet(name='Hedwig') # A simple check of instance type is used to validate the data model = Model(owner='Harry', pet=pet) print(model) #> pet=<types_arbitrary_allowed.Pet object at 0x7fa249653410> owner='Harry' print(model.pet) #> <types_arbitrary_allowed.Pet object at 0x7fa249653410> print(model.pet.name) #> Hedwig print(type(model.pet)) #> <class 'types_arbitrary_allowed.Pet'> try: # If the value is not an instance of the type, it's invalid Model(owner='Harry', pet='Hedwig') except ValidationError as e: print(e) """ 1 validation error for Model pet instance of Pet expected (type=type_error.arbitrary_type; expected_arbitrary_type=Pet) """ # Nothing in the instance of the arbitrary type is checked # Here name probably should have been a str, but it's not validated pet2 = Pet(name=42) model2 = Model(owner='Harry', pet=pet2) print(model2) #> pet=<types_arbitrary_allowed.Pet object at 0x7fa249653a50> owner='Harry' print(model2.pet) #> <types_arbitrary_allowed.Pet object at 0x7fa249653a50> print(model2.pet.name) #> 42 print(type(model2.pet)) #> <class 'types_arbitrary_allowed.Pet'>
(This script is complete, it should run "as is")
Generic Classes as Types🔗
Warning
This is an advanced technique that you might not need in the beginning. In most of the cases you will probably be fine with standard pydantic models.
You can use
Generic Classes as
field types and perform custom validation based on the "type parameters" (or sub-types)
with __get_validators__
.
If the Generic class that you are using as a sub-type has a classmethod
__get_validators__
you don't need to use arbitrary_types_allowed
for it to work.
Because you can declare validators that receive the current field
, you can extract
the sub_fields
(from the generic class type parameters) and validate data with them.
from pydantic import BaseModel, ValidationError from pydantic.fields import ModelField from typing import TypeVar, Generic AgedType = TypeVar('AgedType') QualityType = TypeVar('QualityType') # This is not a pydantic model, it's an arbitrary generic class class TastingModel(Generic[AgedType, QualityType]): def __init__(self, name: str, aged: AgedType, quality: QualityType): self.name = name self.aged = aged self.quality = quality @classmethod def __get_validators__(cls): yield cls.validate @classmethod # You don't need to add the "ModelField", but it will help your # editor give you completion and catch errors def validate(cls, v, field: ModelField): if not isinstance(v, cls): # The value is not even a TastingModel raise TypeError('Invalid value') if not field.sub_fields: # Generic parameters were not provided so we don't try to validate # them and just return the value as is return v aged_f = field.sub_fields[0] quality_f = field.sub_fields[1] errors = [] # Here we don't need the validated value, but we want the errors valid_value, error = aged_f.validate(v.aged, {}, loc='aged') if error: errors.append(error) # Here we don't need the validated value, but we want the errors valid_value, error = quality_f.validate(v.quality, {}, loc='quality') if error: errors.append(error) if errors: raise ValidationError(errors, cls) # Validation passed without errors, return the same instance received return v class Model(BaseModel): # for wine, "aged" is an int with years, "quality" is a float wine: TastingModel[int, float] # for cheese, "aged" is a bool, "quality" is a str cheese: TastingModel[bool, str] # for thing, "aged" is a Any, "quality" is Any thing: TastingModel model = Model( # This wine was aged for 20 years and has a quality of 85.6 wine=TastingModel(name='Cabernet Sauvignon', aged=20, quality=85.6), # This cheese is aged (is mature) and has "Good" quality cheese=TastingModel(name='Gouda', aged=True, quality='Good'), # This Python thing has aged "Not much" and has a quality "Awesome" thing=TastingModel(name='Python', aged='Not much', quality='Awesome') ) print(model) """ wine=<types_generics.TastingModel object at 0x7fa24963f990> cheese=<types_generics.TastingModel object at 0x7fa24963f950> thing=<types_generics.TastingModel object at 0x7fa24963f690> """ print(model.wine.aged) #> 20 print(model.wine.quality) #> 85.6 print(model.cheese.aged) #> True print(model.cheese.quality) #> Good print(model.thing.aged) #> Not much try: # If the values of the sub-types are invalid, we get an error Model( # For wine, aged should be an int with the years, and quality a float wine=TastingModel(name='Merlot', aged=True, quality='Kinda good'), # For cheese, aged should be a bool, and quality a str cheese=TastingModel(name='Gouda', aged='yeah', quality=5), # For thing, no type parameters are declared, and we skipped validation # in those cases in the Assessment.validate() function thing=TastingModel(name='Python', aged='Not much', quality='Awesome') ) except ValidationError as e: print(e) """ 2 validation errors for Model wine -> quality value is not a valid float (type=type_error.float) cheese -> aged value could not be parsed to a boolean (type=type_error.bool) """
(This script is complete, it should run "as is")